Home
Class 12
MATHS
int(x+1)e^(x)log(x*e^(x))dx=...

int(x+1)e^(x)log(x*e^(x))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(x+1)e^(x)log(xe^(x))dx

If I=int e^(-x)log(e^(x)+1)dx, then equal

int(1)/(x)ln((x)/(e^(x)))dx=

Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

int(1)/(x)ln((x)/(e^(x)))dx=

inte^(-x)log(e^x+1)dx

int_(1)^(x)log_(e)[x]dx

Evaluate: int e^(x)(log x+(1)/(x))dx

If I=int e^(-x) log(e^x+1) dx, then equal