Home
Class 12
MATHS
O tan^((1)/(6))((2a-3)/(sqrt(3)b))+tan^(...

O tan^((1)/(6))((2a-3)/(sqrt(3)b))+tan^((1)/(2))((2b)/(a))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)( (2a-b)/(bsqrt(3))) +tan^(-1)((2b-a)/(asqrt(3))) = pi/3

Prove that : tan^(-1)( (2a-b)/(bsqrt(3))) +tan^(-1)((2b-a)/(asqrt(3))) = pi/3

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

Prove the following "tan"^(-1)(2a-b)/(bsqrt(3))+"tan"^(-1)(2b-a)/(asqrt(3))=pi/(3)

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

A normal to parabola, whose inclination is 30^(@) , cuts it again at an angle of (a) tan^(-1)((sqrt(3))/(2)) (b) tan^(-1)((2)/(sqrt(3))) (c) tan^(-1)(2sqrt(3)) (d) tan^(-1)((1)/(2sqrt(3)))

A normal to parabola, whose inclination is 30^(@) , cuts it again at an angle of (a) tan^(-1)((sqrt(3))/(2)) (b) tan^(-1)((2)/(sqrt(3))) (c) tan^(-1)(2sqrt(3)) (d) tan^(-1)((1)/(2sqrt(3)))

If 3tan^(-1)((1)/(2+sqrt(3)))-(tan^(-1)1)/(x)=(tan^(-1)1)/(3) then x is equal to 1(b)2(c)3(d)sqrt(2)

Prove the "tan"^(-1)(2a-b)/(bsqrt3) +"tan"^(-1) (2b-a)/(asqrt3) =pi/3

If A+B+C=pi , then tan((A)/(2))tan((B)/(2))+tan((B)/(2))tan((C)/(2))+tan((C)/(2))tan((A)/(2)) is equal to a) (pi)/(6) b)3 c)2 d)1