Home
Class 12
MATHS
[" 12.If "A(K)=[[k,k-1],[k-1,k]]" then "...

[" 12.If "A_(K)=[[k,k-1],[k-1,k]]" then "],[,|A_(1)|+|A_(2)|+....+|A_(2015)|=],[,1)0quad " 2) "2015quad 3)(2015)^(2)quad 4)(2015)^(3)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A_(k)=[[k,k-1k-1,k]], then |A_(1)|+|A_(2)|+.......+|A_(2015)|=

If A_(K)=[(K,K-1),(K-1,K)] then |A_(1)|+|A_(2)|+...+|A_(2011)|=

Let, C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]] for k ge l and A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]] , then

Let, C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]] for k ge l and A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]] , then

Let, C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]] for k ge l and A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]] , then

Let, C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]] for k ge l and A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]] , then

If a_(k)=(1)/(k(k+1)) for k=1,2,3, .. , n, then (sum_(k=1)^(n) a_(k))^(2)=

If a_(k) = (1)/( k(k+1) ) for k= 1,2,3,….n then (sum_(k=1)^(n) a_(k) )=

a_(k)=(1)/(k(k+1)) for k=1,2,3,4,...n then (sum_(k=1)^(n)a_(k))^(2)=

Suppose a_(1)=45, a_(2)=41 and a_(k)=2a_(k-1)-a_(k-2) AA k ge 3 , then, value of S=(1)/(12) [a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(11)^(2)-a_(12)^(2)] is