Home
Class 8
MATHS
(i){((1)/(3))^(-1)-((1)/(4))^(-1)}^(-1)...

(i){((1)/(3))^(-1)-((1)/(4))^(-1)}^(-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Express each of the following as a rational number of the form p/q : (i) (2^(-1)+3^(-1))^2 (ii) (2^(-1)-4^(-1))^2 ] (iii) {(3/4)^(-1)-(1/4)^(-1)}^(-1)

Simplify (i) (3^(4))^((1)/(2)) (ii) (64)^((1)/(6)) (iii) ((1)/(3^(4)))^((1)/(2))

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=(A)1(B)2(C)3(D)4

find the value of (1)/(i)+(1)/(i^(2))+(1)/(i^(3))+(1)/(i^(4))

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=

The conjugate of a complex number is 1/(i-1) . Then the complex number is (1) (-1)/(i-1) (2) 1/(i+1) (3) (-1)/(i+1) (4) 1/(i-1)

Simplify : (1+i^(3))(1+(1)/(i))^(2)(i^(4)+(1)/(i^(4)))

Prove that: (i) (1-i)^(2)=-2i (ii) (1+i)^(4)xx(1+(1)/(i))^(4)=16 (iii) {i^(19)+((1)/(i))^(25)}^(2)=-4 (iv) i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0 (v) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i .

Express the following in the form a +ib: [((1)/(3)+i(7)/(3))+(4+i(1)/(3))]-(-(4)/(3)+i)

(1)/(1-2i)+(3)/(1+4i)