Home
Class 12
MATHS
lim(n to oo) (n^(p) sin^(2)(n!))/(n +1) ...

`lim_(n to oo) (n^(p) sin^(2)(n!))/(n +1) , 0 lt p lt 1`, is equal to-

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1 , is equal to

lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1 , is equal to

Evaluate lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"wher "0ltplt1.

Evaluate lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"wher "0ltplt1.

lim_ (n rarr oo) (n ^ (alpha) sin ^ (2) n!) / (n + 1), 0

Evaluate lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"where "0ltplt1.

Evaluate: lim_(n rarr oo)(n^(p)sin^(2)(n!))/(n+1)

lim_(nrarr oo) (a^n_b^n)/(a^n+b^n) , where 1lt b lt a , is equal to

lim_(xrarr oo) (a^n_b^n)/(a^n-b^n) , where 1lt b lt a , is equal to