Home
Class 10
MATHS
" i) "(a+b)^(2)-a^(2)+aab+b^(2)...

" i) "(a+b)^(2)-a^(2)+aab+b^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If : sin theta = (a^(2)-b^(2))/(a^(2)+b^(2)), "then" : cot theta= A) (4a^(2)b^(2))/(a^(2) -b^(2)) B) (a^(2) + b^(2))/(a^(2) - b^(2)) C) (4a^(2)b^(2))/(a^(2) + b^(2)) D)none of these.

If a/b= 3/2, then (a ^(2) +b ^(2) )/(a ^(2) - b ^(2)) = ?

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

Simplify: (a^(2)-(b-c)^(2))/((a+c)^(2)-b^(2))+(b^(2)-(a-c)^(2))/((a+b)^(2)-c^(2))+(c^(2)-(a-b)^(2))/((b+c)^(2)-a^(2))

If cos theta+sin theta=a,cos2 theta=b, then (a)a^(2)=b^(2)(2-a^(2))(b)b^(2)=a^(2)(2-b^(2))(c)b^(2)=a^(2)(2-a^(2))(d)a^(2)=b^(2)(2-b^(2))