Home
Class 12
MATHS
The tangent of parabola y^(2) = 4x at th...

The tangent of parabola `y^(2) = 4x` at the point where it cut the circle `x^(2) + y^(2) = 5`. Which of the following point satisfies the eqaution of tangent.

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the tangent to the parabola y^(2) = 4x at the point t is

Tangents are drawn to the circle x^(2) + y^(2) = 12 at the points where it is met by the circle x^(2) + y^(2) - 5x + 3y -2 = 0 , find the point of intersection of these tangents.

If the tangents are drawn to the circle x^(2)+y^(2)=12 at the point where it meets the circle x^(2)+y^(2)-5x+3y-2=0, then find the point of intersection of these tangents.

The point of intersetion of the tangents to the parabola y^(2)=4x at the points where the circle (x-3)^(2)+y^(2)=9 meets the parabola, other than the origin,is

If the tangents are drawn to the circle x^2+y^2=12 at the point where it meets the circle x^2+y^2-5x+3y-2=0, then find the point of intersection of these tangents.

If the tangents are drawn to the circle x^2+y^2=12 at the point where it meets the circle x^2+y^2-5x+3y-2=0, then find the point of intersection of these tangents.