Home
Class 11
MATHS
" yit "sqrt(1+m^(2))(x^(2)+y^(2))-2cx-2m...

" yit "sqrt(1+m^(2))(x^(2)+y^(2))-2cx-2mcy=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the centre and radius of each of the circles whose equations are given below. sqrt(1+m^(2) ) (x^(2)+y^(2))-2cx - 2mcy = 0

Find the centre and radius of each of the circles whose equations are given below. sqrt(1+m^(3) ) (x^(2)+y^(2))-2cx - 2mcy = 0

The centre of the circle (1+m^(2)) (x^(2)+y^(2))-2cx-2cmy =0" is "

The radius of the circle (1+m^(2))(x^(2)+y^(2))-2cx-2cmy=0" is "

If y="("x+sqrt(x^(2)-1)")"^(m) , then prove that, (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+m^(2)y=0

If y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y_(2)+ xy _(1) = ?

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .

If sqrt(a+ib)=x+iy, then possible value of sqrt(a-ib) is x^(2)+y^(2) b.sqrt(x^(2)+y^(2)) c.x+iydx-iy e.sqrt(x^(2)-y^(2))

Identify the curve sqrt((x+1)^(2)+y^(2))+ sqrt(x^(2)+(y-1)^(2))-2 =0