Home
Class 12
MATHS
[" If "x=ae^(t)(sin t+cos t)" and "],[y=...

[" If "x=ae^(t)(sin t+cos t)" and "],[y=ae^(t)(sin t-cos t)," then prove that "],[(dy)/(dx)=(x+y)/(x-y)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=ae^(t)(sint+cost) and y=ae^(t)(sint-cost) , then prove that (dy)/(dx)=(x+y)/(x-y) .

If x=ae^(t)(sin t+cos t) and y=ae^(t)(sin t-cos t),quad prove that (dy)/(dx)=(x+y)/(x-y)

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2

If x=a^(sqrt(sin-1)t) and y=a^(sqrt(cos-1)t), then show that (dy)/(dx)=-(y)/(x)

If x= e^t (sin t - cos t) , y= e^t (sin t + cos t) , find dy/dx at t= pi/4

x = a (cos t + sin t), y = a (sin t-cos t)