Home
Class 11
MATHS
" If "f(x)dx=phi(x)," then "int f(ax+b)d...

" If "f(x)dx=phi(x)," then "int f(ax+b)dx=(1)/(a)phi(ax+b)

Promotional Banner

Similar Questions

Explore conceptually related problems

By substitution: Theorem: If int f(x)dx=phi(x) then int f(ax+b)dx=(1)/(a)phi(ax+b)dx

int x(ax+b)^(1/2)dx

Let inte^(x){f(x)-f'(x)}dx=phi(x) . Then inte^(x)*f(x)dx is a) phi(x)+e^(x)f(x) b) phi(x)-e^(x)f(x) c) 1/2{phi(x)+e^(x)f(x)} d) 1/2{phi(x)+e^(x)f'(x)}

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

If d/(dx)(phi(x))=f(x) , then

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is