Home
Class 12
MATHS
[" Q.18Let "U(n)=(n!)/((n+2)!)" where "n...

[" Q.18Let "U_(n)=(n!)/((n+2)!)" where "n in N." If "S_(n)=sum_(n=1)^(n)U_(n)" then "lim_(n rarr oo)S_(n)" equals "],[[" (A) "2," (B) "1," (C) "(1)/(2)," (D) non existent "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let u_(n)=sum_(k=1)^(n)(k) and v_(n)=sum_(k=1)^(n)(k-0.5) . Then lim_(n rarr oo)(sqrt(u_(n))-sqrt(v_(n))) equals

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(n rarr oo)(n!)/((n+1)!+n!) is equal to

lim_(n rarr oo)(n!)/((n+1)!+n!) is equal to

Consider the sequence u_(n)=sum_(r=1)^(n)(r)/(2^(r)),n>=1 then the lim it_(n rarr oo)u_(n)

lim_ (n rarr oo) [(n!) / (n ^ (n))] ^ ((1) / (n))

lim_ (n rarr oo) ((n!) ^ ((1) / (n))) / (n) equals

Find lim_ (n rarr oo) n ^ (n) (1 + n) ^ (- n)

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=