Home
Class 10
MATHS
1+sin^(-1)x+sin^(-1)y=cos(1sqrt((-x^(2))...

1+sin^(-1)x+sin^(-1)y=cos(1sqrt((-x^(2)))(1-y^(2))-2y)

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

sin^(- 1)x+sin^(- 1)y=cos^(- 1) (sqrt(1-x^2) sqrt(1-y^2)-xy) if x in [0,1], y in [0,1]

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))

Prove that sin ^ (- 1) x + cos ^ (- 1) y = (tan ^ (- 1) (xy + sqrt ((1-x ^ (2)) (1-y ^ (2)))) ) / (y sqrt (1-x ^ (2)) - x sqrt (1-y ^ (2)))

Prove the following "tan"^(-1)((1-x)/(1+x))-"tan"^(-1)((1-y)/(1+y))="sin"^(-1)((y-x)/(sqrt(1+x^(2))sqrt(1+y^(2)))) .

Prove the sin^2(sin^(-1) x+sin^(-1) y+sin^(-1)z) =cos^2 (cos^(-1)x +cos^(-1) y+cos^(-1) z)