Home
Class 12
MATHS
[" If "f(x)={[(sin{cos x})/(x-pi/2),,x!=...

[" If "f(x)={[(sin{cos x})/(x-pi/2),,x!=(pi)/(2)],[1,,x=(pi)/(2)]," where "{}],[" represents the fractional part function,then "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If {(sin{cos x})/(x-(pi)/(2)),x!=(pi)/(2) and 1,x=(pi)/(2) where {.} represents the fractional part function,then f(x) is

If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} represents the fractional part function, then lim_(xto pi//2)f(x) is

If f (x)= {{:((sin {cos x})/(x- (pi)/(2)) , x ne (pi)/(2)),(1, x= (pi)/(2)):}, where {k} represents the fractional park of k, then:

If f (x)= {{:((sin {cos x})/(x- (pi)/(2)) , x ne (pi)/(2)),(1, x= (pi)/(2)):}, where {k} represents the fractional park of k, then:

If f(x)={(sin{cosx}/(x-pi/2), x ne pi/2),(1, x=pi/2):} , where {.} denotes the fractional part of x, then f(x) is :

if f(x) ={{:(cos^-1 {cos x},xlt(pi)/(2)),( pi[x]-1,x ge (pi)/(2) ):}. where [.] repesents greatest funcrtion and {.} represents fractional part function , then discuss the continuity of f(x) at x=(pi)/(2).

Period of f(x)=cos2pi{x} is , where {x} denote the fractional part of x)

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)