Home
Class 9
MATHS
2x^(2)-x+(1)/(8)...

2x^(2)-x+(1)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following inequality: log_((5)/(8))(2x^(2)-x-(3)/(8))>=1

The term independent of x in the binomial expansion of (1-1/x+3x^(5))(2x^(2)-1/x)^(8) is:

x^(2)+(1)/(x^(2))-7(x-(1)/(x))+8

Find the coefficient of x^(-5) in the expansion of (2x^(2)-(1)/(5x))^(8)

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

If 2[x^(2)+(1)/(x^(2))]-2[x-(1)/(x)]-8=0 , what are the two values of (x-(1)/(x)) ?

The solution set of the inequality log_(5/8)(2x^(2)-x-3/8) ge1 is-

The solution set of the inequality log_(5/8)(2x^(2)-x-3/8) ge1 is-