Home
Class 12
MATHS
(x+1)(dy)/(dx)=2e^(-y)-1...

(x+1)(dy)/(dx)=2e^(-y)-1

Promotional Banner

Similar Questions

Explore conceptually related problems

(x+1)(dy)/(dx)+1=2e^(-y)

Find the general solution of the differential equation (x+1)(dy)/(dx) = 2 e^-y - 1 , given that y = 0 when x = 0.

(x+1)(dy)/(dx) -1 = 2e^(-y) , y=0, " when " x=1

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

(x-y)(1-(dy)/(dx))=e^(x)

Solve the following differential equations. (i) (dy)/(dx) =(1+y^(2))/(1+x^(2)) (ii) (dy)/(dx) = (sqrt(1-y^(2)))/(sqrt(1-x^(2))) (iii) (dy)/(dx) = 2y tan hx (iv) sqrt(1+x^(2))dx + sqrt(1+y^(2))dy = 0 (v) (dy)/(dy) = e^(x-y)+x^(2)e^(-y)

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)