Home
Class 12
MATHS
" Given that "f'(B)=6" and "f'(A)=4" the...

" Given that "f'(B)=6" and "f'(A)=4" then "lim_(h rarr0)(f(2h+2+h^(2))-f(2))/(f(h-h^(2)+1)-f(1))" is : "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

f(x) is differential function. Given f^(')(1) =4, f^(')(2) - 6 , then lim_(h rarr 0) (f(2+2h+h^(2))-f(2))/(f(1+h-h^(2))-f(1))

If f(x) is differentiable EE f'(1)=4,f'(2)=6 then lim_(h rarr0)(f(3h+2+h^(3))-f(2))/(f(2h-2h^(2)+1)-f(1))=

lim_(h rarr0)h sin(1/h)

lim_(h rarr0)(e^((x+h)^(2))-e^(x^(2)))/(h)

lim_(h rarr 0) (f(2h+2+h^(2))-f(2))/(f(h-h^(2)+1)-f(1)) given that f^(')(2) = 6 , and f^(')(1) =4

lim_(h rarr0)(sin^(2)(x+h)-sin^(2)x)/(h)