Home
Class 10
MATHS
[" 1."sin2A+sin2B-sin2C=4cos A cos B sin...

[" 1."sin2A+sin2B-sin2C=4cos A cos B sin C],[2cos2A-cos2B-cos2C=-1+4cos A sin B sin C],[3*cos2A-cos2B+cos2C=1-4sin A cos B sin C]

Promotional Banner

Similar Questions

Explore conceptually related problems

cos2B + cos2A-cos2C = 1-4sin A sin B cos C

If A+B+C=270^(@), then cos2A+cos2B+cos2C+4sin A sin B sin C=

If A+B+C=90^(@) then (cos2A+cos2B+cos2C-1)/(sin A sin B sin C)=

If A+B+C=(3 pi)/(2), then cos2A+cos2B+cos2C is equal to (i) 1-4cos A cos B cos C( is 4sin A sin B sin C (iii) 1+2cos A cos B cos C(iv)1-4sin A sin B sin C

If A + B + C =pi , prove that : cos 2A - cos 2B + cos 2C= 1-4 sin A cos B sin C .

If : A+B+C=pi, "then" : sin 2A + sin 2 B - sin 2 C= A) 4 sin A * cos B * cos C B) 4 sin B * sin C * cos A C) 4 sin C * cos A * cos B D) 4 sin A * sin B * sin C

If A+B+C=(3 pi)/(2), then cos2A+cos2B+cos2C is equal to a.1-4cos A cos B cos C b.4sin A sin B sin C c.1+2cos A cos B cos Cd.1-4sin A sin B sin C

If A+B+C=(3 pi)/(2), then cos2A+cos2B+cos2C is equal to (A)1-4cos A cos B cos C(B)4sin A sin B sin C(C)1+42cos A cos B cos C(D)1-4sin A sin B sin C

If A+B+C=90^(@) then (cos 2A+cos 2B+cos 2C-1)/(sin A sin B sin C)=