Home
Class 12
MATHS
[" 414"x+y+z=0],[" (i) "|[x,y,z],[x^(2),...

[" 414"x+y+z=0],[" (i) "|[x,y,z],[x^(2),y^(2),z^(2)],[y+z,z+x,x+y]|=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z=,0, show that x,y,zx^(2),y^(2),z^(2)y+z,z+x,x+y]|=0

if x+y+z = 0 then prove that |{:(x,y,z),(x^2,y^2,z^2),(y+z,z+x,x+y):}|=0

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z^2),(x^4,y^4,z^4)|=|(x^2,y^2,z^2),(x^4,y^4,z^4),(x, y, z)|=x y z(x-y)(y-z)(z-x)(x+y+z) .

Find the values of x, y, z , if the matrix A=[[0, 2 y, z],[ x, y, -z],[ x, -y, z]] satisfy the equation A^' A=I

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

Evaluate the following: |[0,x y^2,x z^2],[x^2y,0,y z^2],[x^2z, z y^2, 0]|

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot