Home
Class 12
MATHS
If sum(i=1)^6sin^(-1)xi+cos^(-1)yi=9pi t...

If `sum_(i=1)^6sin^(-1)x_i+cos^(-1)y_i=9pi` then `int_(sum_(i=1)^6y_i)^(sum_(i=1)^6x_i)xln(1+x^2)((e^x)/(1+e^(2x)))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(6)sin^(-1)x_(i)+cos^(-1)y_(i)=9 pi then int_(Sigma_(i=1)^(6)y_(i))^(6)x ln(1+x^(2))((e^(x))/(1+e^(2x)))dx

If sum_(i=1)^(4)(sin^(-1)x_(i)+cos^(-1)y_(i))=6pi , then \int\limitsum_(i=1)^(4)x(i)^sum(i=1)^(4)y(i) xln(1+x^(2))(e^(x^(2))/(1+e^(2x)))dx is euqal to

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

If sum_(i=1)^(2 n) cos ^(-1) x_(i)=0, then sum_(i=1)^(2 pi) x_(i)=

If sum_(i=1)^(2n) sin^(-1) x_i=npi , then sum_(i=1)^(2n) x_i equals :

If sum_(i=1)^(2n) sin^(-1) x_i =npi , then sum_(i=1)^(2n) x_i is equal to :

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 then find the value of sum_(i=1)^(2n)x_(i)

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 , then sum_(i=1)^(2n)x_(i) is :