Home
Class 10
MATHS
logxlog18(sqrt(2)+sqrt(8))=1/3 Then the ...

`log_xlog_18(sqrt(2)+sqrt(8))=1/3` Then the value of `1000x` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) Then the value of 1000x is equal to

If log_x log_18 (sqrt2+sqrt8)=1/3. Then the value of 1000 x is equal to

If log_(x)log_(18)(sqrt(2)+sqrt(8))=-(1)/(2) then the value of x is equal to

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=

If log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2) . Then the value of x .

If log_(sqrt(8))x=3(1)/(3), find the value of x

If log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2) . Then the value of 'x'.

If log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2) . Then the value of 'x'.

a=3(sqrt(8+2sqrt(7))-sqrt(8-2sqrt(7))),b=sqrt(((42)(30)+(36))) then the value of log _(a)b is equal to