Home
Class 10
MATHS
If log(0.5)log5(x^2-4)>log(0.5)1, then '...

If `log_(0.5)log_5(x^2-4)>log_(0.5)1, then 'x'` lies in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(0.5)log_5(x^2-4)gtlog_(0.5)1 , then 'x' lies in the interval

If log_(0.3) (x-1) lt log_(0.09) (x-1) , then x lies in the interval :

If log_(0.3)(x-1) < log_(0.09)(x-1) , then x lies in the interval :

If log_(0.3)(x-1)lt log_(0.09)(x-1) , then x lies in the interval

If log_(0.3) (x - 1) lt log_(0.09) (x - 1) , then x lies in the interval

If log_(0.3) (x - 1) lt log_(0.09) (x - 1) , then x lies in the interval

If log_(3x+5)(ax^(2)+8x+2)>2 then x lies in the interval

Q.if (log_(5)x)^(2)+log_(5)x<2 then x belong to the interval