Home
Class 10
MATHS
((3^x-4^x)*ln(x+2))/(x^2-3x-4)lt=0...

`((3^x-4^x)*ln(x+2))/(x^2-3x-4)lt=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

((3^(x)-4^(x))*ln(x+2))/(x^(2)-3x-4)<=0

the solution set of the inequality (3^(x)-4^(x))*(ln(x+2))/(x^(2)-3x-4)<=0

Solve the equation,log_(x^(2)+4x+5){log_(3x^(2)+4x+5)(x^(2)-3x)}=0

Solve for x backslash2(log)_(3)(x-2)+(log)_(3)(x-4)^(2)=0

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

for x^(2) - 4 ne 0 , the value of (d)/(dx)[log{e^(x) ((x - 2)/(x+2))^(3//4)}]at x = 3 is

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

The value of a for which the function f(x)={(((4^x-1)^3)/(sin(x/a)log(1+x^2/3)) ,, x!=0),(12(log4)^3 ,, x=0):} may be continuous at x=0 is :