Home
Class 13
MATHS
[4-6iff(x)=sqrt(2x^(2)-1)" and "y=f(x^(2...

[4-6iff(x)=sqrt(2x^(2)-1)" and "y=f(x^(2))," then "(dy)/(dx)" at "x=1" is equal to "],[[" (A) "2," (B) "1," (C) "-2]," (B) "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1, is

if f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)) then (dy)/(dx) at x=1 is:

If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then find (dy)/(dx) at x=1

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1 is equal to 2b 1c.-2d.-1

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If f^1(x)=sqrt(2x^(2)-1) and y=f(x^2) then dy/dx at x = 1 is

If f'(x)=sqrt(2x^2-1) and y=f(x^2) then what is dy/dx at x = 1 ?