Home
Class 12
MATHS
If the curves (x^(2))/(a^(2))+(y^(2))/(...

If the curves `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1` intersect orthogonally, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(x^(2))/(a^(12))+(y^(2))/(b^(2))=1 intersect orthogonally if a^(2)-a^(2)=b^(2)-b^(2)

If the curves (x^(2))/(a)+(y^(2))/(b)=1 and (x^(2))/(c )+(y^(2))/(d)=1 intersect at right angles then prove that a-b=c-d

Find the condition for the curves (x^(2))/(a^(2))-(y^(2))/(b^(2)) = 1 and xy = c^(2) to intersect orthogonally.

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

If curves (x^2)/(a^2)-(y^2)/(b^2)=1 and xy= c^2 intersect othrogonally , then

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

Find the condition for the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and xy =c^(2) to interest orthogonally.

Find the condition for the following set of curves to intersect orthogonally: (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and xy=c^(2)(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(A^(2))-(y^(2))/(B^(2))=1