Home
Class 12
MATHS
If A=[[1, 1, 1],[ 1, 1, 1],[ 1, 1, 1]], ...

If `A=[[1, 1, 1],[ 1, 1, 1],[ 1, 1, 1]]`, prove that `A^n=[[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)]], n in N.`

Text Solution

AI Generated Solution

To prove that \( A^n = \begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix} \) for the matrix \( A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If A,=[[1,1,11,1,11,1,1]]A^(n)=,[[3^(n-1),1]]3^(n-1),3^(n-1),3^(n-1)3^(n-1),3^(n-1),3^(n-1)]]

If A=[111111111], then prove that A^(n)=[3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)] for every positive integer n

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Show that (n-1)/(n+1)+3((n-1)/(n+1))^2+5((n-1)/(n+1))^3+....+oo=sum_(r=1)^(n-1) r .

Simplify: (3^(n+1))/(3^(n(n-1)))-:(9^(n+1))/((3^(n+1))^((n-1)))

Prove that 1^(1)xx2^(2)xx3^(3)xx xx n^(n)<=[(2n+1)/3]^(n(n+1)/2),n in N

Prove that 1+2+3+.....n=(n(n+1))/(2)

Prove that :1+2+3+...+n=(n(n+1))/(2)