Home
Class 12
MATHS
If log10 5 + log10 (5x+1) = log10 ( x + ...

If `log_10 5 + log_10 (5x+1) = log_10 ( x + 5) +1`, then x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Note : log x = log_10 x : log 5^23

If log_10 2, log_10(2^x- 1) and log_10(2^x+3) are in A.P., then find the value of x.

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x

if (1+3+5-...upto n terms)/(4+7+10+...upto n terms)=20/(7log_10 X and n = log_10 x + log_10 X^1/2 + log_10 X^1/4 + ............ + oo , then x is equal to

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then x is equal to

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to