Home
Class 12
MATHS
cot^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sq...

`cot^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sin x) -sqrt(1+sinx))]` का मान निकालिए ।

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx)))=

Cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))}=

Tan^(-1)[(sqrt(1+sinx)-sqrt(1-sinx))/(sqrt(1+sinx)+sqrt(1-sinx))]=

Prove that cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

Show that : cot^(-1) [(sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))]= x/2

cot^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))] =a) pi-x b) 2pi-x c) x/2 d) pi-(x)/2

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))