Home
Class 11
MATHS
If f(x) and g(x) ar edifferentiable func...

If f(x) and g(x) ar edifferentiable function for `0lex le1` such that `f(0)=2,g(0) = 0,f(1)=6,g(1)=2`, then in the interval (0,1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are differentiable functions for 0lexle1 such that f(0)=2,g(0)=0,f(1)=6,g(1)=2, then in the interval (0,1)

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0 for a l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d) none of these

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0 for a l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d) none of these

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0fora l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d)none of these

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0 for a l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d) none of these

If f(x) and g(x) are differentiable functions for 0<=x<=1 such that f(0)=10,g(0)=2,f(1)=2,g(1)=4 then in the interval (0,1).f'(x)=0 for all xf'(x)+4g'(x)=0 for at least one xf(x)=2g'(x) for at most one x none of these

If f(x) and g(x) are differentiable function for 0lexle1 such that f(0)=2,g(0)=0,f(1)=6,g(1)=2 , then show that these exist c satisfying 0ltclt1andf'(c)=2g'(c)

If f and g are differentiable functions for 0 le x le 1 such that f(0) = 2, g(0), f (1) = 6, g (1) = 2 , then show that there exists c satisying 0 < c < 1 and f' (c ) = 2g' ( c)

If f(x) and g(x) are differentiable function for 0 le x le 23 such that f(0) =2, g(0) =0 ,f(23) =22 g (23) =10. Then show that f'(x)=2g'(x) for at least one x in the interval (0,23)

Let f(x) and g(x) be differentiable functions for 0 le x le 1 such that f(0) = 2, g(0) = 0, f(1) = 6 . Let there exist a real number c in (0,1) such that f ’(c) = 2 g ’(c), then g(1) =