Home
Class 12
MATHS
(x-1)(x^2-5x+7)<(x-1), then x belongs to...

`(x-1)(x^2-5x+7)<(x-1)`, then x belongs to

Promotional Banner

Similar Questions

Explore conceptually related problems

(x^(2)-x-1)(x^(2)-x-7)<-5

Solve (x^(2)-x-1)(x^(2)-x-7)<-5

Solve (x^2-x-1)(x^2-x-7)<-5.

Solve (x^2-x-1)(x^2-x-7)<-5.

Number of integers satisfying the inequation (x^2-x-1)(x^2-x-7)<-5, are 4 (b) 2 (c) 1 (d) 0

Number of integers satisfying the inequation (x^(2)-x-1)(x^(2)-x-7)<-5, are 4 (b) 2 (c) 1(d)0

If y=tan^(-1)1/(1+x+x^2)+tan^(-1)1/(x^2+3x+3)+tan^(-1)1/(x^2+5x+7)++ upto n terms, then find the value of y^(prime)(0)dot

If y=tan^(-1)1/(1+x+x^2)+tan^(-1)1/(x^2+3x+3)+tan^(-1)1/(x^2+5x+7)++ upto n terms, then find the value of y^(prime)(0)dot

If the solution of the inequality (x^(2)-x-1)(x^(2)-x-7)<-5 is x in(alpha,beta)uu(gamma,delta) then find the value of alpha+beta+gamma+delta

Simplify: x^2-3x+5-1/2(3x^2-5x+7)