Home
Class 12
MATHS
7.|[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,...

7.|[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c^(2)

By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2) .

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

Show that Delta=abs[[-a^2,ab,ac],[ba,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2):}|=4a^2b^2c^2

Using properties of determinants, prove that |(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2