Home
Class 12
MATHS
If cos (theta - alpha) = a and sin(theta...

If `cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2)`, then prove that `cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If cos (theta - alpha) = a, cos (theta - beta) = b , then the value of sin^(2) (alpha - beta) + 2ab cos (alpha - beta) is

If sin (theta + alpha) = a and sin (theta + beta) = b,"then" cos 2 (alpha - beta) - 4ab cos (alpha - beta) =

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If sin(theta+alpha)=aandsin(theta+beta)=b , then prove that cos2(alpha-beta)-4abcos(alpha-beta)=1-2a^(2)-2b^(2) .