Home
Class 12
MATHS
" 3.Lot "A=[[2,b,1],[b,b^(2)+1,b],[1,b,2...

" 3.Lot "A=[[2,b,1],[b,b^(2)+1,b],[1,b,2]]" where bs "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A = [{:(2, b,1),(b, b^(2)+1,b),(1, b,2):}], " where "b gt 0 . Then, the maximum value of ("det"(A))/(b) is

Let A= [[1,-1],[2,-1]] and B= [[1,a],[4,b]] . If (A+B)^2=A^2+B^2 , then (a, b)=

If A^'=[[3, 4],[ -1, 2],[ 0, 1]] and B=[[-1, 2 , 1],[ 1,2, 3]] then verify that 1) (A+B)^'=A^'+B^' 2) (A-B)^'=A^'-B^'

If A=[[1,-1],[2,-1]] , B=[[a,1],[b,-1]] and (A+B)^(2)=A^(2)+B^(2) ,then find the values of a and b

If A = [[1,-1],[2,-1]],B = [[a,1],[b,-1]] and (A+B)^2 = A^2+B^2 find a and b.

If A=[[1,-1],[2,-1]],B=[[a,1],[b,-1]] and (A+B)^(2)=A^(2)+B^(2) , the value of a+b is