Home
Class 12
MATHS
tan^(-1)1+tan^(-1)2+tan^(-1)3=pi=2[tan^(...

tan^(-1)1+tan^(-1)2+tan^(-1)3=pi=2[tan^(-1)1+tan^(-1)(1)/(2)+tan^(-1)(1)/(3)]y

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

tan^(-1)2-tan^(-1)1=tan^(-1)(1)/(3)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)