Home
Class 12
MATHS
20.sin^(-1)x+sin^(-1)sqrt(1-x^(2)),-1<=x...

20.sin^(-1)x+sin^(-1)sqrt(1-x^(2)),-1<=x<=1.quad (N.C.E.R.T)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find quad (dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),-1<=x<=1

If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " (dy)/(dx) is

Find (dy)/(dx) , if y=sin^(-1)x+sin^(-1)sqrt(1-x^2) , -1lt=xlt=1

Find (dy/dx) , if y=sin ^(-1) x+sin ^(-1) sqrt(1-x^2) , -1 le x le 1

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

(sin^(-1)x)/(sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))

Differentiate the following w.r.t. x: sin^-1x+sin^-1sqrt(1-x^2),-1lexle1

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)