Home
Class 12
MATHS
[" 23) Let "A=[-1,1],B=[-1,1],C=[0,oo)."...

[" 23) Let "A=[-1,1],B=[-1,1],C=[0,oo)." Let "],[R_(1)={(x,y)in A times B:x^(2)+y^(2)=1}" and "],[R_(2)={(x,y)in A times C:x^(2)+y^(2)=1}]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P={(x,y)//x in R, y in R, x^(2)+y^(2)=1} , then P is

Let A={x in R:- 1 = 0}and let S={(x,y)in A xx B: x^2+y^2=1} and S_0={(x,y)in A xx C: x^2+y^2=1}. The (A) S defines a function from A to B (B) S_0 defines a function from A to C (C) S_0 defines a function from A to B (D) S defines a function from A to C

Let A={x in R :-1lt=xlt=1}=B and C={x in R : xgeq0} and let S={(x ,\ y) in AxxB : x^2+y^2=1} and S_0={(x ,\ y) in AxxC : x^2+y^2=1}dot Then S defines a function from A to B (b) S_0 defines a function from A to C (c) S_0 defines a function from A to B (d) S defines a function from A to C

Let A={(x,y):x,y in R,x^(2)+y^(2)=1} and B={(x,0):x in R,-1<=x<=1}, then the elements of A nn B can be

Let A= {(x,y) in R xx R |2x^(2)+2y^(2)-2x-2y=1}, B= {(x,y) in R xx R|4x^(2)+4y^(2)-16y+7=0} and C={(x,y) in R xx R |x^(2)+y^(2)-4x-2y+5 le r^(2)} . Then the minimum value of |r| such that A uu B sube C is equal to

Let (x, y) be such that sin^(-1)(ax)+cos^(-1)(y)+cos^(-1)(bxy)=pi//2 . Match the statements in column I with statements in column II. {:("Column I", "Column II"), ("A) If a = 1 and b = 0, then (x, y)", "p) lies on the circle "x^(2)+y^(2)=1), ("B) If a = 1 and b = 1, then (x, y)", "q) lies on "(x^(2)-1)(y^(2)-1)=0), ("C) If a = 1 and b = 2, then (x, y)", "r) lies on y = x"), ("D) If a = 2 and b = 2, then (x, y)", "s) lies on "(4x^(2)-1)(y^(2)-1)=0):}

Let y=(x^(2)+3x+1)/(x^(2)+x+1) then y in R then

Let R={(x,y):x^(2)+y^(2)=1,x,y in R} be a relation in R. Then the relation R is

Let A:{x:x^(2)-5x+6=0},B{y:y^(2)-1=0} Write A xx B