Home
Class 14
MATHS
39*sum(r=5)^(10)(r^(2)-2r+1)=?...

39*sum_(r=5)^(10)(r^(2)-2r+1)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(10) (4r-3)^(2) =

The value of sum_(r=2)^(100)(3^(r)(2-2r))/(r(r+1)(r+2)) is equal to

The sum sum_(r=1)^(10)(r^(2)+1)xx(r!) is equal to

The value of sum_(r=1)^(49)(2r^(2) - 48r +1)/((50-r).""^(50)C_(r)) is "_____" .

The value of sum_(r=1)^(49)(2r^(2) - 48r +1)/((50-r).""^(50)C_(r)) is "_____" .

Find sum_(r=1)^(10) (r+2)(3r+1).

sum_(r=1)^(20) r (2r+1)=

sum_(s=1)^(10)sum_(r=0)^(s-1)(2^(s)-2^(r))

sum_(r=1)^(10)(r)/(1-3r^(2)+r^(4))