Home
Class 11
MATHS
If the normals at points t1a n dt2 meet ...

If the normals at points `t_1a n dt_2` meet on the parabola, then `t_1t_2=1` (b) `t_2=-t_1-2/(t_1)` `t_1t_2=2` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the normals at points t_1 and t_2 meet on the parabola, then (a) t_1t_2=1 (b) t_2=-t_1-2/(t_1) (c) t_1t_2=2 (d) none of these

If the normals at points t_(1) and t_(2) meet on the parabola,then t_(1)t_(2)=1 (b) t_(2)=-t_(1)-(2)/(t_(1))t_(1)t_(2)=2( d) none of these

If the normals at P(t_(1))andQ(t_(2)) on the parabola meet on the same parabola, then (A) t_(1)t_(2)=-1 (B) t_(2)=-t_(1)-(2)/(t_(1)) (C) t_(1)t_(2)=1 (D) t_(1)t_(2)=2

If the normals at points ' t_(1) " and ' t_(2) ' to the parabola y^(2)=4 a x meet on the parabola, then

If the normals drawn at the points t_(1) and t_(2) on the parabola meet the parabola again at its point t_(3) , then t_(1)t_(2) equals.