Home
Class 12
MATHS
tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=ta...

tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3

निम्न समीकरण को हल कीजिए - tan^(-1)(x-1)+tan^(-1)(x)+tan^(-1)(x+1)=tan^(-1) 3 x

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

Find the value of x for which tan^(-1)(1+x)+tan^(-1)x+tan^(-1)(x-1)=tan3 gets satisfied.

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]| =0 , then the number of values of x satisfying the equation is (a) 1 (b) 2 (c) 3 (d) 4

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]|=0 , then the number of values of x satisfying the equation is 1 (b) 2 (c) 3 (d) 4

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]| =0 , then the number of values of x satisfying the equation is (a) 1 (b) 2 (c) 3 (d) 4