Home
Class 12
MATHS
Let f(x)=x+e^x, thenvalue of int1^(1+e)2...

Let `f(x)=x+e^x`, thenvalue of `int_1^(1+e)2f^-1(x)dx` is equal to (where `f^-1(x)` denotes inverse of f(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

If f(x)=e^(x), then lim_(x rarr oo)f(f(x))^((1)/()(x)})); is equal to (where {x} denotes fractional part of x).

Let f(x)=(sin^(2)pix)/(1+pi^(x)). Then, int[f(x)+f(-x)]dx is equal to

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If 2f(x)- 3f(1/x) = x then int_1^(e) f(x) dx =

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is

Let, f(x) = int e^(x) (x-1)(x-2) dx , then f(x) decreases in the interval

Evaluate int_0^1e^x{f(x)+f'(x)}dx where f (1)=f(0)=1