Home
Class 12
MATHS
" The value of "lim(x rarr-oo)tan^(2)x(s...

" The value of "lim_(x rarr-oo)tan^(2)x(sqrt(2sin^(2)x+3sin x+4)-sqrt(sin^(2)x+6sin x+2))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr(pi)/(2))tan^(2)x(sqrt(2sin^(2)x+3sin x+4)-sqrt(sin^(x)+6sin x+2)) is equal to

Evaluate lim_(xto pi//2) tan^(2)x[sqrt(2sin^(2)x+3sinx+4)-sqrt(sin^(2)x+6sinx+2)]

Evaluate the value of lim_(n rarr(pi)/(2))tan^(2)x sqrt((2sin^(2)x+3sin x+4)-sqrt(sin^(2)x+sin x+2))

The value of lim _(xto(pi)/(2))tan^(2) x (sqrt( 2 sin ^(2) x+3 sin x+4)-sqrt(sin ^(2) x+6sin x+2)) is-

The value of lim_(x rarr0)(sin x+log_(e)(sqrt(1+sin^(2)x)-sin x))/(sin^(3)x)

lim_(x rarr0)(x+2sin x)/(sqrt(x^(2)+2sin x+1)-sqrt(sin^(2)x-x+1))

lim_(x to 0) (x +2 sin x)/(sqrt(x^(2)+2 sin x + 1)-sqrt(sin^(2) x - x+ 1)) is

Evaluate the following limits (i) lim_(x to (pi)/(2)) tan^(2) x [sqrt(2 sin^(2) x + 3 sin x + 4) - sqrt(sin^(2) x + 6 sin x + 2)] (ii) lim_(theta to 0) (sqrt(1 + sin 3 theta) -1)/(ln(1 + tan 2theta)) (iii) lim_(x to 0) (sqrt(1 + x) - ""^(3)sqrt(1 + x))/(x) (iv) lim_(phi to 0) (8)/(phi^(8)) (1 - cos (phi^(2))/(2) - cos (phi^(2))/(4) + cos (phi^(2))/(2). cos (phi^(2))/(4))

Evaluate the following limits (i) lim_(x to (pi)/(2)) tan^(2) x [sqrt(2 sin^(2) x + 3 sin x + 4) - sqrt(sin^(2) x + 6 sin x + 2)] (ii) lim_(theta to 0) (sqrt(1 + sin 3 theta) -1)/(ln(1 + tan 2theta)) (iii) lim_(x to 0) (sqrt(1 + x) - ""^(3)sqrt(1 + x))/(x) (iv) lim_(phi to 0) (8)/(phi^(8)) (1 - cos (phi^(2))/(2) - cos (phi^(2))/(4) + cos (phi^(2))/(2). cos (phi^(2))/(4))

The value of lim_(x rarr0)(sqrt(4+x)-sqrt(4-x))/(sin^(-1)2x)=