Home
Class 9
MATHS
[" (v) "f(x)=3x^(4)+2x^(3)-(x^(2))/(3)+(...

[" (v) "f(x)=3x^(4)+2x^(3)-(x^(2))/(3)+(2)/(27);quad g(x)=(x+(2)/(3))," (vi) "f(x)=9x^(3)-3x^(2)+x-5],[" (vii) "f(x)=x^(3)-6x^(2)+2x-4;quad quad g(x)=1-3x]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=3x^(4)+2x^(3)-(x^(2))/(3)-(x)/(9)+(2)/(27),g(x)=x+(2)/(3)

f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x

f(x)=2x^(3)-9x^(2)+x+12,g(x)=3-2x

" 2" f(x)=4x^(4)-3x^(3)-2x^(2)+x-7,g(x)=x-1

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1

f(x)=3x^4+2x^3-(x^2)/3-x/9+2/(27),\ g(x)=\ x+2/3 find the value of f(x)-g(x).

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : (i) f(x)=5x^(3)+x^(2)-5x-1, g(x)=x+1 (ii) f(x)=x^(3)+3x^(2)+3x+1,g(x)=x+1 (iii) f(x)=x^(3)-4x^(2)+x+6,g(x)=x-2 (iv) f(x)=3cx^(3)+x^(2)-20x+12,g(x)=3x-2 f(x)=4x^(3)+20x^(2)+33x+18,g(x)=2x+3

Use the Factor Theorem to determine whether g (x) is factor of f(x) in each of the following cases: (i) f (x) = 5x ^(3) + x ^(2)-5x -1, g (x)=x +1 (ii) f (x) = x ^(3) + 3x ^(2) + 3x +1 , g(x) =x +1 (iii) f (x) =x ^(3) - 4x ^(2) +x + 6, g (x) =x -2 (iv) f (x) = 3x ^(3) + x^(2) - 20x + 12, g (x) = 3x -2 (v) f (x) = 4x ^(3) + 20 x ^(2) + 33 x +18, g (x) =2x +3