Home
Class 14
MATHS
" w.) Let "y=cos x^(3)*sin^(2)(x^(5))...

" w.) Let "y=cos x^(3)*sin^(2)(x^(5))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivatives w.r.t. x : cos x^(3)*sin^(2)(x^(5))

Differentiate cos x^(3)* sin^(2)(x^(5)) w.r.t.x.

If y=cos (x^(3)) sin ^(2) (x^(5)),then (dy)/(dx) =

Find derivative of cos x^(3).sin^(2)(x^(5)) w.r.t.to x

Differentiate the following function w.r.t x cos(x^3).sin^2(x^5)

int (sin ^ (2) x cos ^ (2) x) / ((sin ^ (5) x + cos ^ (3) x sin ^ (2) x + sin ^ (3) x cos ^ (2) x + cos ^ (5) x) ^ (2)) dx

Differentiate cos(x^3)sin^2(x^5) w.r.t.x

The number of ordered 5 -tuple (u,v,w,x,y) where (u,v,w,x,y in[1,11]) which satisfy the inequality 2^(sin^(2)u+3cos^(2)v)*3^(sin^(2)w+cos^(2)x)*5^(cos^(2)y)>=720 is

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx