Home
Class 12
MATHS
lim(x->0) (lnx^n-[x])/[x], n in N where ...

`lim_(x->0) (lnx^n-[x])/[x], n in N` where `[x]` denotes the greatest integer is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

Prove that lim_(x->a^+) [x]=[a] for all a in R, where [*] denotes the greatest integer

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(x rarr oo) (logx^(n)-[x])/([x]) , where n in N and [.] denotes the greatest integer function, is

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is