Home
Class 11
MATHS
What is the value of 1+i^2+i^4+i^6+....+...

What is the value of `1+i^2+i^4+i^6+....+i^100` where `i=sqrt(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 1+i^2+i^4+i^6

The value of 1+i^2+i^4+i^6+....+i^16 is

What is the vlaue of 1+i^(2)+i^(4)+i^(60)+....+i^(100), where i=sqrt(-1) ?

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N .

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt-1 and nEN.

The value of i^103 + i^(-99) = _______ where i = sqrt(-1) .

What is the value of (1+i)^(5)-(1-i)^(5), where i=sqrt(-1) ?

What is the argument of the complex number (-1-i) where i=sqrt(-1)?