Home
Class 12
MATHS
If f(x) =x(e^([x]+|x|)-2)/([x]+|x|), the...

If `f(x) =x(e^([x]+|x|)-2)/([x]+|x|)`, then `lim_(xrarr0)f(x)` is.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

Evaluate lim_(xrarr0) f(x) , where

Evaluate lim_(xrarr0) f(x) , where

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

If f(x)={(x-|x|)/x ,x!=0, 2,x=0 , show that lim_(xrarr0) f(x) does not exist.

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

If lim_(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim_(xrarr0) [1+(f(x))/(x)]^(1//x)=