Home
Class 12
MATHS
If x=e^(x//y) , prove that (dy)/(dx)=(x-...

If `x=e^(x//y)` , prove that `(dy)/(dx)=(x-y)/(xlogx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)

If x=e^((x)/(y)), prove that (dy)/(dx)=(x-y)/(x log x)

If x = e^(x/y) , prove that (dy)/(dx) = (x-y)/(x log x) .

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x= e^((x)/(y)) , then prove that (dy)/(dx)= (x-y)/(x.log x)

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))