Home
Class 12
MATHS
Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1...

Let `tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2))` , where `|x|<1/(sqrt(3))` . Then a value of y is : (1) `(3x-x^3)/(1-3x^2)` (2) `(3x+x^3)/(1-3x^2)` (3) `(3x-x^3)/(1+3x^2)` (4) `(3x+x^3)/(1+3x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt 1/sqrt3 . Then, the value of y is

Let, tan^-1y=tan^-1x+tan^-1((2x)/(1-x^2)) , where absx lt 1/sqrt3 . Then a value of y is:

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

tan^(-1)x+tan^(-1) (1-x) = 2 tan ^(-1) sqrt(x(1-x))

Tan^(-1)(x/y)-Tan^(-1)((x-y)/(x+y))=

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

Solve for x : tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)2/3 , where x sqrt(3)