Home
Class 12
MATHS
The range of f(x)= sin^(-1)x +cos^(-1)x+...

The range of `f(x)= sin^(-1)x +cos^(-1)x+ tan^(-1) x` is

Text Solution

Verified by Experts

`-1<=x<=1`
`x in R`
`sin^(-1)x+cos^(-1)x=pi/2`
`f(x)=pi/2+tan^(-1)x`
`R(f(x))=[pi/2-pi/4,pi/22+pi/4]`
`=[pi/4,3/4pi]`
Option 2 is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

Range of f(x)=sin^(-1)x+cos^(-1)x+cot^(-1)x

Range of f(x)=sin^(-1)x+cos^(-1)x+cot^(-1)x

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

If the range of y=sin^(-1)x+cos^(-1)x+tan^(-1) x is [k,K] , then

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x.

The domain and range of f(x)=sin^(1)x+cos^(-1)x+tan^(-1)x+cot^(-1)x+sec^(-1)x+cos ec^(-1)x respectively are

Range of f(x)=cos^(- 1)x+2sin^(- 1)x+3tan^(- 1)x is

Range of sin^(-1)x+cos^(-1)x+tan^(-1)x is

If [a, b] is Range of function f(x) = sin^(-1)x + cos^(-1)x + tan^(-1)x then no. of roots of the equation 1-|x| = tan^(-1)x is [b] + k then k =