Home
Class 11
MATHS
Let A and B be points with position vect...

Let `A` and `B` be points with position vectors `veca` and `vecb` with respect to origin `O`. If the point `C` on `OA` is such that `2vec(AC)=vec(CO), vec(CD) ` is parallel to `vec(OB)` and `|vec(CD)|=3|vec(OB)|` then `vec(AD)` is (A) `vecb-veca/9` (B) `3vecb-veca/3` (C) `vecb-veca/3` (D) `vecb+veca/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1 : In DeltaABC , vec(AB) + vec(BC) + vec(CA) = 0 Statement 2 : If vec(OA) = veca, vec(OB) = vecb , then vec(AB) = veca + vecb

Statement 1 : In DeltaABC , vec(AB) + vec(BC) + vec(CA) = 0 Statement 2 : If vec(OA) = veca, vec(OB) = vecb , then vec(AB) = veca + vecb

In a triangle OAC, if B is the mid point of side AC and vec(OA)=veca,vec(OB)=vecb , then what is vec(OC) .

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

The position vectors of A,B,C,D are veca,b,2vec+3vecb and veca-2vecb respectively show that vec(DB)=3vecb - veca and vec(AC)=veca+3vecb .

If [veca+vecb, vecb+vec c, vec c+veca]=8 then [veca, vecb, vec c] is

Vectors vecA, vecB and vec C are such that vecA.vecB =0 and vecA. vecC = 0 . Then the vectors parallel to vec A

If veca .vecb = veca.vec cand veca xx vecb = veca xx vec c,veca ne0 , then

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

The position vector of foru points A,B,C,D are veca, vecb, 2veca+3vecb and veca-2vecb respectively. Expess the vectors vec(AC), vec(DB), vec(BC) and vec(CA) in terms of veca and vecb .