Home
Class 11
MATHS
Given three vectors bar a=6 bar i-3bar j...

Given three vectors `bar a=6 bar i-3bar j,bar b=2 bar i-6 bar j` and `bar c=-2 bar i+21 bar j` such that `bar alpha=bar a+bar b+bar c`. Then the resolution of the vector `bar alpha` into components with respect to `bar a` and `bar b` given by

Promotional Banner

Similar Questions

Explore conceptually related problems

Vector bar(a)=6hati-3hatj,bar(b)=2hati-6hatj and bar( c )=-2hati+21hatj are such that bar(alpha)=bar(a)+bar(b)+bar( c ) . The vector bar(alpha) is represented as …………….. A component of bar(a) and bar(b) .

If bar(a)=bar(i)+4bar(j), bar(b)=2bar(i)-3bar(j) and bar(c)=5bar(i)+9bar(j)" then "bar(c)=

If bar a = 2 bar I + bar j - bar k, bar b = - bari + 2 bar j - 4 bar k and bar c = bar I + bar j + bar k , then find ( bar a xx bar b) cdot (bar b xx bar c) .

Let bar a = 2 bari + 4 bar j - 5 bark, bar b= bar i + bar j + bar k and bar c = bar j + 2 bar k . Find the unit vector in the opposite direction of bar a + bar b + bar c .

If the vectors bar(a)=2bar(i)+3bar(j)+6bar(k) and bar(b) are collinear and |bar(b)|=21 , then bar(b) equals to

bar (a) = 2bar (i) + 3bar (j) -bar (k), bar (b) = bar (i) + 2bar (j) -4bar (k), bar (c) = bar (i) + bar (j) + bar (k), bar (d) = bar (i) -bar (j) -bar (k) then

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

If the vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) + 2bar(j)-3bar(k), bar(c ) = 3bar(i) + pbar(j) +5bar(k) are coplanar then find p.

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .